Measurement of 129Xe T1 in blood to explore the feasibility of hyperpolarized 129Xe MRI
- PMID: 8537536
- DOI: 10.1097/00004728-199511000-00025
Measurement of 129Xe T1 in blood to explore the feasibility of hyperpolarized 129Xe MRI
Abstract
Objective: The major obstacle to the use of 129-xenon (I = 1/2) as a new source of contrast in magnetic resonance is its low sensitivity. The hyperpolarized 129Xe-MRI technique using laser optical pumping of rubidium promises to resolve this problem. The potential of xenon-based MRI for the body tissues other than the lung air spaces depends on the 129Xe polarization lifetime (T1) in the blood at a magnetic field of commonly available clinical MRI systems.
Materials and methods: Xenon with natural abundance of 129Xe (26%) was dissolved in human blood and studied at 36 degrees C in a 2.35 T 40 cm bore MRI spectrometer (27.6 MHz). Zeeman relaxation (T1) of six blood samples was measured by the progressive saturation method for periods of 4-8 h each.
Results: NMR spectra revealed two peaks at 216.0 ppm (A) and 194.0 ppm (B) relative to the xenon gas above the blood volume. Assignment and 129Xe T1 values were 4.5 +/- 1 s for red blood cells (A), 9.6 +/- 2 s for plasma (B) and 11.9 +/- 1.6 s for xenon gas at atmospheric oxygen pressure. Xenon dissolved in distilled water appears at 189.8 ppm and has T1 = 26.3 +/- 1.4 s.
Conclusion: These relaxation times, though shorter than expected, are comparable to the transport time of blood, and are long enough to encourage use of hyperpolarized xenon for MRI studies in tissues, in addition to lung.
Similar articles
-
Development of hyperpolarized noble gas MRI.Nucl Instrum Methods Phys Res A. 1998;402:441-53. doi: 10.1016/s0168-9002(97)00888-7. Nucl Instrum Methods Phys Res A. 1998. PMID: 11543065
-
Spin-lattice relaxation of laser-polarized xenon in human blood.Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3664-9. doi: 10.1073/pnas.96.7.3664. Proc Natl Acad Sci U S A. 1999. PMID: 10097094 Free PMC article.
-
Longitudinal relaxation and diffusion measurements using magnetic resonance signals from laser-hyperpolarized 129Xe nuclei.J Magn Reson. 1997 May;126(1):58-65. doi: 10.1006/jmre.1997.1159. J Magn Reson. 1997. PMID: 9177796
-
Hyperpolarized xenon in NMR and MRI.Phys Med Biol. 2004 Oct 21;49(20):R105-53. doi: 10.1088/0031-9155/49/20/r01. Phys Med Biol. 2004. PMID: 15566166 Review.
-
Potential applications of laser polarised xenon for CBF measurements by NMR.J Neuroradiol. 2005 Dec;32(5):325-8. doi: 10.1016/s0150-9861(05)83162-1. J Neuroradiol. 2005. PMID: 16424832 Review.
Cited by
-
Establishing an accurate gas phase reference frequency to quantify 129 Xe chemical shifts in vivo.Magn Reson Med. 2017 Apr;77(4):1438-1445. doi: 10.1002/mrm.26229. Epub 2016 Apr 5. Magn Reson Med. 2017. PMID: 27059646 Free PMC article.
-
An open-source, low-cost NMR spectrometer operating in the mT field regime.J Magn Reson. 2021 Nov;332:107076. doi: 10.1016/j.jmr.2021.107076. Epub 2021 Sep 27. J Magn Reson. 2021. PMID: 34624719 Free PMC article.
-
NMR of laser-polarized xenon in human blood.Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12932-6. doi: 10.1073/pnas.93.23.12932. Proc Natl Acad Sci U S A. 1996. PMID: 8917521 Free PMC article.
-
XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use.Magn Reson Imaging. 2014 Jun;32(5):541-50. doi: 10.1016/j.mri.2014.02.002. Epub 2014 Feb 10. Magn Reson Imaging. 2014. PMID: 24631715 Free PMC article.
-
Evidence of nonspecific surface interactions between laser-polarized xenon and myoglobin in solution.Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9472-5. doi: 10.1073/pnas.170278897. Proc Natl Acad Sci U S A. 2000. PMID: 10931956 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources