Development of identical orientation maps for two eyes without common visual experience
- PMID: 8538789
- DOI: 10.1038/379251a0
Development of identical orientation maps for two eyes without common visual experience
Abstract
In the mammalian visual cortex, many neurons are driven binocularly and response properties such as orientation preference or spatial frequency tuning are virtually identical for the two eyes. A precise match of orientation is essential in order to detect disparity and is therefore a prerequisite for stereoscopic vision. It is not clear whether this match is accomplished by activity-dependent mechanisms together with the common visual experience normally received by the eyes, or whether the visual system relies on other, perhaps even innate, cues to achieve this task. Here we test whether visual experience is responsible for the match in a reverse-suturing experiment in which kittens were raised so that both eyes were never able to see at the same time. A comparison of the layout of the two maps formed under these conditions showed them to be virtually identical. Considering that the two eyes never had common visual experience, this indicates that correlated visual input is not required for the alignment of orientation preference maps.
Comment in
-
Organization of the visual cortex.Nature. 1996 Jul 25;382(6589):306-7. doi: 10.1038/382306a0. Nature. 1996. PMID: 8684456 No abstract available.
Similar articles
-
Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex.Nature. 1994 Aug 4;370(6488):370-2. doi: 10.1038/370370a0. Nature. 1994. PMID: 8047142
-
Correlated binocular activity guides recovery from monocular deprivation.Nature. 2002 Mar 28;416(6879):430-3. doi: 10.1038/416430a. Nature. 2002. PMID: 11919632
-
Influence of experience on orientation maps in cat visual cortex.Nat Neurosci. 1999 Aug;2(8):727-32. doi: 10.1038/11192. Nat Neurosci. 1999. PMID: 10412062
-
Vision and cortical map development.Neuron. 2007 Oct 25;56(2):327-38. doi: 10.1016/j.neuron.2007.10.011. Neuron. 2007. PMID: 17964249 Review.
-
Functional cell classes and functional architecture in the early visual system of a highly visual rodent.Prog Brain Res. 2005;149:127-45. doi: 10.1016/S0079-6123(05)49010-X. Prog Brain Res. 2005. PMID: 16226581 Review.
Cited by
-
Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex.J Neurosci. 1999 Jul 15;19(14):5967-79. doi: 10.1523/JNEUROSCI.19-14-05967.1999. J Neurosci. 1999. PMID: 10407035 Free PMC article.
-
Critical period plasticity matches binocular orientation preference in the visual cortex.Neuron. 2010 Jan 28;65(2):246-56. doi: 10.1016/j.neuron.2010.01.002. Neuron. 2010. PMID: 20152130 Free PMC article.
-
Experience-dependent and independent binocular correspondence of receptive field subregions in mouse visual cortex.Cereb Cortex. 2014 Jun;24(6):1658-70. doi: 10.1093/cercor/bht027. Epub 2013 Feb 6. Cereb Cortex. 2014. PMID: 23389996 Free PMC article.
-
Visual Perceptual Learning Induces Long-Lasting Recovery of Visual Acuity, Visual Depth Perception Abilities and Binocular Matching in Adult Amblyopic Rats.Front Cell Neurosci. 2022 Apr 26;16:840708. doi: 10.3389/fncel.2022.840708. eCollection 2022. Front Cell Neurosci. 2022. PMID: 35558878 Free PMC article.
-
Plasticity of orientation preference maps in the visual cortex of adult cats.Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6352-7. doi: 10.1073/pnas.082407499. Epub 2002 Apr 16. Proc Natl Acad Sci U S A. 2002. PMID: 11959906 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources