Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jan 1;313 ( Pt 1)(Pt 1):229-34.
doi: 10.1042/bj3130229.

Glycine decarboxylase and pyruvate dehydrogenase complexes share the same dihydrolipoamide dehydrogenase in pea leaf mitochondria: evidence from mass spectrometry and primary-structure analysis

Affiliations
Comparative Study

Glycine decarboxylase and pyruvate dehydrogenase complexes share the same dihydrolipoamide dehydrogenase in pea leaf mitochondria: evidence from mass spectrometry and primary-structure analysis

J Bourguignon et al. Biochem J. .

Abstract

In order to compare the dihydrolipoamide dehydrogenase associated with the pyruvate dehydrogenase complex (E3) with that associated with the glycine decarboxylase complex (L-protein), we report for the first time the purification and characterization of the E3 component from pea leaf mitochondria. The first 30 amino acids of the N-terminal sequence of the mature E3 protein are identical with those of the mature L-protein of the glycine decarboxylase complex. Electrospray ionization-mass spectrometric analysis of E3 and the L-protein gave exactly the same molecular mass of 49,753 +/- 5 Da. We have also confirmed the primary structure of the L-protein, in particular the C-terminal sequence, deduced from the cDNA published by Bourguignon, Macherel, Neuburger and Douce [(1992) Eur. J. Biochem. 204, 865-873]. Western-blot analysis shows that specific polyclonal antibodies raised against the L-protein recognize specifically both E3 and L-protein but not the porcine dihydrolipoamide dehydrogenase. We conclude that, in pea leaf mitochondria, the pyruvate dehydrogenase and glycine decarboxylase complexes share the same dihydrolipoamide dehydrogenase. We have also confirmed by MS analysis that the FAD is not covalently bound to the enzyme.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Bacteriol. 1973 Jul;115(1):1-8 - PubMed
    1. J Bacteriol. 1991 May;173(10):3109-16 - PubMed
    1. J Biol Chem. 1992 Apr 15;267(11):7745-50 - PubMed
    1. Eur J Biochem. 1993 Oct 1;217(1):377-86 - PubMed

Publication types

MeSH terms

Substances

Associated data