Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 15;93(2):356-64.
doi: 10.1161/01.cir.93.2.356.

Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction

Affiliations

Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction

K Node et al. Circulation. .

Abstract

Background: We have reported that myocardial ischemia increases nitric oxide (NO) production. Several lines of evidence suggest that NO reduces myocardial contraction. Therefore, we tested whether endogenous NO decreases the inotropic response of the ischemic myocardium and whether endogenous NO is beneficial in the metabolic function of ischemic myocardium.

Methods and results: The left anterior descending coronary artery was perfused with blood from the left carotid artery in 72 dogs. An infusion of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase, did not affect fractional shortening (FS) under nonischemic conditions. After reduction of perfusion pressure so that coronary blood flow decreased to 60% of the control value, FS of the perfused area decreased, and intravenous infusion of isoproterenol increased FS. Before and during intravenous infusion of isoproterenol under conditions of coronary hypoperfusion, FS was significantly increased in the L-NAME group compared with the untreated group. Both lactate extraction ratio and the pH in coronary venous blood were significantly lower in the L-NAME-treated group than in the untreated group during coronary hypoperfusion. Infusion of L-arginine prevented the effects of L-NAME in the ischemic myocardium.

Conclusions: These results indicate that endogenous NO reduces myocardial contractile function and improves myocardial metabolic function in the ischemic heart. The myocardial energy-sparing effect as well as coronary vasodilation due to NO may be beneficial to the ischemic myocardium.

PubMed Disclaimer

LinkOut - more resources