Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;42(12):1145-57.
doi: 10.1109/10.476121.

A universal steady state I-V relationship for membrane current

Collaborators, Affiliations

A universal steady state I-V relationship for membrane current

Y B Chernyak. IEEE Trans Biomed Eng. 1995 Dec.

Abstract

A purely electrical mechanism for the gating of membrane ionic channel gives rise to a simple I-V relationship for membrane current. Our approach is based on the known presence of gating charge, which is an established property of the membrane channel gating. The gating charge is systematically treated as a polarization of the channel protein which varies with the external electric field and modifies the effective potential through which the ions migrate in the channel. Two polarization effects have been considered: 1) the up or down shift of the whole potential function, and 2) the change in the effective electric field inside the channel which is due to familiar effect of the effective reduction of the electric field inside a dielectric body because of the presence of surface charges on its surface. Both effects are linear in the channel polarization. The ionic current is described by a steady state solution of the Nernst-Planck equation with the potential directly controlled by the gating charge system. The solution describes reasonably well the steady state and peak-current I-V relationships for different channels, and when applied adiabatically, explains the time lag between the gating charge current and the rise of the ionic current. The approach developed can be useful as an effective way to model the ionic currents in axons, cardiac cells and other excitable tissues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources