Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Nov;109(3):1093-106.
doi: 10.1104/pp.109.3.1093.

Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana

Affiliations
Comparative Study

Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana

Y Cao et al. Plant Physiol. 1995 Nov.

Abstract

K+ channels play diverse roles in mediating K+ transport and in modulating the membrane potential in higher plant cells during growth and development. Some of the diversity in K+ channel functions may arise from the regulated expression of multiple genes encoding different K+ channel polypeptides. Here we report the isolation of a novel Arabidopsis thaliana cDNA (AKT2) that is highly homologous to the two previously identified K+ channel genes, KAT1 and AKT1. This cDNA mapped to the center of chromosome 4 by restriction fragment length polymorphism analysis and was highly expressed in leaves, whereas AKT1 was mainly expressed in roots. In addition, we show that diversity in K+ channel function may be attributable to differences in expression levels. Increasing KAT1 expression in Xenopus oocytes by polyadenylation of the KAT1 mRNA increased the current amplitude and led to higher levels of KAT1 protein, as assayed in western blots. The increase in KAT1 expression in oocytes produced shifts in the threshold potential for activation to more positive membrane potentials and decreased half-activation times. These results suggest that different levels of expression and tissue-specific expression of different K+ channel isoforms can contribute to the functional diversity of plant K+ channels. The identification of a highly expressed, leaf-specific K+ channel homolog in plants should allow further molecular characterization of K+ channel functions for physiological K+ transport processes in leaves.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Gen Physiol. 1995 Mar;105(3):309-28 - PubMed
    1. Science. 1992 Dec 4;258(5088):1654-8 - PubMed
    1. J Membr Biol. 1992 Feb;126(1):1-18 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. FEBS Lett. 1992 May 4;302(1):21-5 - PubMed

Publication types

MeSH terms

Associated data