Stable intracellular acidification upon polyamine depletion induced by alpha-difluoromethylornithine or N1,N12-bis(ethyl)spermine in L1210 leukaemia cells
- PMID: 8554515
- PMCID: PMC1136177
- DOI: 10.1042/bj3120749
Stable intracellular acidification upon polyamine depletion induced by alpha-difluoromethylornithine or N1,N12-bis(ethyl)spermine in L1210 leukaemia cells
Abstract
Polyamines play major roles in ionic and osmotic regulation, but their exact involvement in specific ion transport processes is poorly defined. Treatment of L1210 mouse leukaemia cells with either 5 mM alpha-difluoromethylornithine (DFMO), a suicide substrate of ornithine decarboxylase, or 25 microM N1,N12-bis(ethyl)spermine (BE-3-4-3), a dysfunctional polyamine analogue, caused a stable decreased in intracellular pH (pHi) by 0.1-0.4 unit from steady-state control values between 7.4 and 7.6, as measured either by partition of a weak acid or with a fluorescent pH-sensitive probe. This effect was not related to cell growth status or differences in metabolic acid generation, and was observed in either the presence or absence of HCO3-. Exogenous spermidine (10-25 microM) or putrescine (25-50 microM) fully reversed DFMO- or BE-3-4-3-induced acidification within 2 and 8 h respectively. Recovery of pHi in L1210 cells after a nigericin- or NH4(+)-mediated acid load in HCO3(-)-free buffers was mediated by Na+/H+ antiporter activity, in addition to a minor Na(+)-independent and amiloride-insensitive pathway. Decreased steady-state pHi was maintained in polyamine-depleted L1210 cells after recovery from acid stress. Moreover, the pHi-dependence of the rate of Na(+)-dependent H+ extrusion after an acid stress was altered by DFMO and BE-3-4-3, resulting in a set-point which was lower by 0.25-0.30 pH unit in polyamine-depleted cells. On the other hand, neither the rate nor the magnitude of Na+/H(+)-exchanger-mediated alkalinization induced by hypertonic shock was decreased by polyamine depletion. Thus polyamine depletion induces a persistent defect in pHi homeostasis which is due, at least in part, to a stable decrease in the pHi set-point of the Na+/H+ exchanger.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
