Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 16;35(2):562-6.
doi: 10.1021/bi951703+.

Activation of calcineurin A subunit phosphatase activity by its calcium-binding B subunit

Affiliations

Activation of calcineurin A subunit phosphatase activity by its calcium-binding B subunit

Y Watanabe et al. Biochemistry. .

Abstract

The protein phosphatase activity of calcineurin (CaN) is activated through calcium binding to both calmodulin and the B subunit of CaN. The purpose of this study was to determine which domain(s) in the CaN B subunit is required for either binding to the CaN A subunit or for transducing the effects of B subunit Ca2+ binding to the stimulation of the CaN A subunit phosphatase activity. We have previously demonstrated that interaction of CaN B regulatory subunit with the CaN A catalytic subunit requires hydrophobic residues within the CaN A sequence 328-390 [Watanabe Y., Perrino, B.A., Chang, B.H., & Soderling, T.R. (1995) J. Biol. Chem. 270, 456-460]. In the present study, selected hydrophobic residues within the B subunit were mutated to Glu to Gln. CaN B subunit mutants BE-1 (Val115/Leu116 to Glu), BE-2 (Val156/157/168/169 to Glu), and BQ-2 (Val156/157/168/169 to Gln) were expressed and purified. The three mutant B subunits bound 45Ca2+ normally. Mutants BE-2 and BQ-2 interacted with a GST fusion protein containing the B subunit binding domain of the CaN A subunit (residues 328-390), and they stimulated the phosphatase activity of the CaN A subunit in an in vitro reconstitution assay. Mutant BE-1 had a 3-fold reduced affinity for binding CaN A, and this mutant, even at saturating concentrations, gave very little stimulation of CaN A phosphatase activity. We conclude that residues Val115/Leu116 in the B subunit participate in high-affinity binding to the A subunit and are required for transducing the effects [i.e., decrease Km and increase Vmax; Perrino, B.A., Ng, L.Y., & Soderling, T.R. (1995) J. Biol. Chem. 270, 340-346] of B subunit Ca2+ binding to stimulation of CaN A phosphatase activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources