Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov 22;277(2):291-311.
doi: 10.1016/0008-6215(95)00220-n.

Metabolism of xyloglucan generates xylose-deficient oligosaccharide subunits of this polysaccharide in etiolated peas

Affiliations

Metabolism of xyloglucan generates xylose-deficient oligosaccharide subunits of this polysaccharide in etiolated peas

R Guillén et al. Carbohydr Res. .

Abstract

Oligosaccharide subunits of xyloglucan were isolated from the stems and roots of etiolated pea plants and structurally characterized. The two most abundant subunits of pea xyloglucan are the well-known nonasaccharide, XXFG, and heptasaccharide, XXXG. In addition, significant amounts of oligosaccharides that have not previously been reported to be subunits of pea xyloglucan were detected, including a decasaccharide, XLFG, two octasaccharides, XLXG and XXLG, a pentasaccharide, XXG, and a trisaccharide, XG. Several novel oligosaccharide subunits, including the octasaccharide, GXFG, and the hexasaccharide, GXXG, were also found. Xyloglucan oligosaccharides generated by treatment of intact pea stem cell walls were compared to oligosaccharides generated by endoglucanase treatment of xyloglucan polysaccharides obtained by subsequent alkali extraction of the same cell walls. The results suggest that the xyloglucan in etiolated pea stems is distributed between at least two domains, one of which is distinguished by its enzyme accessibility. We further hypothesize that the chemical modification of a xyloglucan during cell-wall maturation depends on its physical environment (i.e., the domain in which it resides). For example, only the endoglucanase-released material, representing the enzyme-accessible xyloglucan domain, contains significant amounts of the two unusual oligosaccharide subunits, GXXG and GXFG, both of which have a nonreducing terminal glucosyl residue. This structure may be generated during cell-wall maturation by the sequential action of an endolytic enzyme (such as xyloglucan endotransglycosylase or endoglucanase) and an alpha-xylosidase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources