Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 12;271(2):742-7.
doi: 10.1074/jbc.271.2.742.

Characterization of an unusual Rho factor from the high G + C gram-positive bacterium Micrococcus luteus

Affiliations
Free article

Characterization of an unusual Rho factor from the high G + C gram-positive bacterium Micrococcus luteus

W L Nowatzke et al. J Biol Chem. .
Free article

Abstract

A transcription termination factor (Rho) was purified from the Gram-positive bacterium Micrococcus luteus, and the complete gene sequence was determined. The M. luteus Rho polypeptide has 690 residues, which is 271 residues more than its homolog from Escherichia coli. Most of the additional residues compose a highly charged, hydrophilic segment that is inserted in a non-conserved region between two conserved regions of the RNA-binding domain of the known Rho homolog proteins. This segment extends from residues 49 to 311 and includes a stretch of 238 residues that contain no hydrophobic side chains. Biochemical studies indicate that the M. luteus protein is very similar to E. coli Rho in terms of its RNA-dependent NTPase activity and its sensitivity to the Rho-specific inhibitor bicyclomycin. However, the M. luteus protein has a less stringent RNA cofactor specificity. It also acts to terminate RNA transcription with E. coli RNA polymerase on the lambda cro DNA template, but at much earlier termination stop points than those recognized by E. coli Rho. Thus, the M. luteus protein functions as a true Rho factor, but with a different specificity than that of E. coli Rho. We propose that this altered specificity is consistent with its need to function on transcripts that have a high content of G + C residues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources