Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;36(9):1945-55.

Physical properties of ceramides: effect of fatty acid hydroxylation

Affiliations
  • PMID: 8558083
Free article

Physical properties of ceramides: effect of fatty acid hydroxylation

J Shah et al. J Lipid Res. 1995 Sep.
Free article

Abstract

The structural and thermotropic properties of alpha-hydroxy fatty acid (HFA) and non-hydroxy fatty acid (NFA) ceramides (CER) have been studied using differential scanning calorimetry (DSC) and X-ray diffraction techniques. The DSC of anhydrous HFA-CER shows a single, sharp reversible transition at 95.6 degrees C (delta H = 15.3 kcal/mol). At intermediate hydrations HFA-CER exhibited more complex behavior but at maximum hydration only a single reversible transition is observed at 80.0 degrees C (delta H = 8.5 kcal/mol). X-ray diffraction of hydrated (74% water) HFA-CER at 20 degrees C shows a lamellar structure with a bilayer periodicity d = 60.7 Angstrum; a single wide angle reflection at 4.2 Angstrum is characteristic of hexagonal chain packing. Above the main transition temperature at 91 degrees C, a hexagonal (HII) phase is observed. In contrast, DSC of anhydrous NFA-CER demonstrates two thermal transitions at 81.3 degrees C (delta H = 6.8 kcal/mol) and 85.9 degrees C (delta H = 3.5 kcal/mol). With increasing hydration, both transitions shift towards lower temperatures; at maximum hydration, on heating, the endothermic transitions occur at 72.7 degrees C (delta H = 9.8 kcal/mol) and 81.1 degrees C (delta H = 4.0 kcal/mol). On cooling, there is hysteresis of both transitions. X-ray diffraction of NFA-CER (80% water) at 20 degrees C shows a well-ordered lamellar structure with a bilayer periodicity d = 58.6 Angstrum and three wide-angle reflections at 4.6 Angstrum, 4.2 Angstrum, and 3.8 Angstrum. At 77 degrees C (between the two transitions), again a lamellar structure exists with reduced bilayer periodicity d = 53.1 Angstrum and four wide-angle reflections at 4.6 Angstrum, 4.2 Angstrum, and 3.8 Angstrum are observed. Above the second transition, only a single low angle reflection at 30.0 Angstrum is observed; a diffuse reflection at 4.6 Angstrum is indicative of a melted chain phase. Thus, HFA-CER exhibits a simple phase behavior involving the reversible conversion of a gel phase to a hexagonal phase (L beta-->HII). However, NFA-CER shows a more complex polymorphic phase behavior involving two gel phases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources