Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jan;276(1):130-6.

Beta adrenergic receptor activation attenuates the generation of inositol phosphates in the pregnant rat myometrium. Correlation with inhibition of Ca++ influx, a cAMP-independent mechanism

Affiliations
  • PMID: 8558422
Comparative Study

Beta adrenergic receptor activation attenuates the generation of inositol phosphates in the pregnant rat myometrium. Correlation with inhibition of Ca++ influx, a cAMP-independent mechanism

L D Khac et al. J Pharmacol Exp Ther. 1996 Jan.

Abstract

In the pregnant rat myometrium, an averaged 30% of inositol phosphate accumulation induced by carbachol and oxytocin was inhibited by oxodipine indicating that a part of receptor-mediated generation of inositol phosphates depended on Ca++ influx through voltage-gated Ca++ channels. In fura-2-loaded cells, carbachol and oxytocin caused a two-phase [Ca++]i response, made up of a transient [Ca++]i peak of about 700 nM followed by a sustained phase of about 120 nM. Oxodipine reduced the [Ca++]i peak by 40% and the plateau phase by 50%, pointing to a contribution of Ca++ influx in both the [Ca++]i peak and sustained phase. Isoproterenol reduced inositol phosphate response to carbachol and oxytocin to an amount equivalent to that elicited by oxodipine. No additional reduction could be obtained in a combination of isoproterenol and oxodipine. Isoproterenol decreased by 40% the [Ca++]i peak and by 70% the [Ca++]i plateau phase. Differently from isoproterenol, forskolin did not affect inositol phosphate accumulation induced by oxytocin and failed to attenuate the [Ca++]i peak. The inhibitory effect of isoproterenol on both inositol phosphate accumulation and [Ca++]i increase induced by oxytocin was abolished by pertussis toxin. These data suggest that beta adrenergic receptor activation is linked via a cAMP-independent, pertussis toxin-sensitive process to an activation of K+ channels, as revealed by use of selective K+ channel antagonists, with the consequent closure of voltage-gated Ca++ channels, resulting in the inhibition of the Ca(++)-associated generation of inositol phosphates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms