Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan;276(1):206-11.

Pharmacokinetics and blood-brain barrier transport of [3H]-biotinylated phosphorothioate oligodeoxynucleotide conjugated to a vector-mediated drug delivery system

Affiliations
  • PMID: 8558431

Pharmacokinetics and blood-brain barrier transport of [3H]-biotinylated phosphorothioate oligodeoxynucleotide conjugated to a vector-mediated drug delivery system

D Wu et al. J Pharmacol Exp Ther. 1996 Jan.

Abstract

Antisense phosphorothioate oligodeoxynucleotides (PS-ODNs) are potential neuropharmaceuticals should these agents be made transportable through the blood-brain barrier (BBB) in vivo. The present studies report on attempts to enhance brain uptake of systemically administered 3'-biotinylated PS-ODN (bio-PS-ODN) by conjugation to a complex of streptavidin (SA) and the OX26 monoclonal antibody to the rat transferrin receptor. This antibody undergoes receptor-mediated transcytosis through the BBB and the OX26/SA conjugate mediates BBB transport of biotinylated therapeutics. The brain uptake of unconjugated [3H]-bio-PS-ODN approximated that of [14C]sucrose, a plasma volume marker that is not significantly transported through the BBB. Conjugation of [3H]-bio-PS-ODN to the OX26/SA vector resulted in a marked increase in BBB transport and the permeability-surface area (PS) product of the conjugate was 4.0 microliters/min/g. However, when the bio-PS-ODN/OX26-SA conjugate was injected intravenously in anesthetized rats, the BBB PS product of the conjugate was reduced 23-fold to a value of 0.173 +/- 0.006 microliters/min/g. The marked inhibition of vector-mediated transport of the bio-PS-ODN after intravenous injection was due to avid plasma protein binding of PS-ODNs, as has been demonstrated with protein binding assays and internal carotid artery perfusion studies. In conclusion, although PS-ODNs have the advantage of increased metabolic stability and resistance to endonucleases in vivo, the BBB transport of antisense PS-ODN therapeutics conjugated to the brain drug delivery vector OX26/SA is markedly attenuated due to plasma protein-binding effects.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources