Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Oct;147(3):283-94.
doi: 10.1007/BF00234526.

Modulation of a volume-regulated chloride current by F-actin

Affiliations

Modulation of a volume-regulated chloride current by F-actin

I Levitan et al. J Membr Biol. 1995 Oct.

Abstract

We have examined whether F-actin integrity is involved in activation of a volume-regulated Cl- current (VRChlC) in B-lymphocytes. VRChlC activation was initiated in response to establishing a whole cell recording in the presence of a hyposmotic gradient. Parallel confocal microscopy experiments using Rhodamine-Phalloidin (R-P) as a specific marker of F-actin showed that the submembrane actin ring is reversibly disrupted in response to an hyposmotic gradient. Disruptions of cortical F-actin integrity by 50 microM cytochalasin B (CB) does not trigger activation of VRChlC under isosmotic conditions or potentiate the rate of activation when the osmolarity of the extracellular solution was decreased by 75%. However, incubation with CB increased the rate of VRChlC activation in response to a 90% hyposmotic gradient. Phalloidin, a stabilizer of F-actin, decreases the rate of VRChlC activation in response to a 90% gradient, but has no effect in response to a 75% gradient. These observations suggest that disassembly of cortical F-actin is not critical for VRChlC activation in B-lymphocytes. The integrity of cortical F-actin, however, can exert a modulatory effect on the rate of VRChlC activation in the presence of a hyposmotic gradient.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. Am J Physiol. 1992 Mar;262(3 Pt 2):F468-79 - PubMed
    1. Neuron. 1993 May;10(5):805-14 - PubMed
    1. Pflugers Arch. 1993 Jan;422(4):347-53 - PubMed
    1. Biophys J. 1994 Jan;66(1):169-78 - PubMed

Publication types