Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;376(9):561-8.
doi: 10.1515/bchm3.1995.376.9.561.

Structural and immunological studies on the soluble formate dehydrogenase from Alcaligenes eutrophus

Affiliations

Structural and immunological studies on the soluble formate dehydrogenase from Alcaligenes eutrophus

J Friedebold et al. Biol Chem Hoppe Seyler. 1995 Sep.

Abstract

During growth with formate as the sole energy source the autotrophic bacterium Alcaligenes eutrophus synthesizes a cytoplasmic formate dehydrogenase. The enzyme is a molybdo-iron-sulfur-flavo protein and the major NADH-producing system under these growth conditions, although it was estimated to constitute only 0.65% of the soluble cell protein. An electron microscopic analysis of the purified enzyme revealed that the particle is made up of four nonidentical submasses, corroborating previous structural data. The NH2-terminal amino acid sequences of the enzyme subunits exhibited significant similarities to those of only one other heteromeric formate dehydrogenase, the enzyme from the methane-utilizing bacterium Methylosinus trichosporium. Metal analyses yielded 21.5 g-atom iron, 2.18 g-atom nickel, 0.76 g-atom molybdenum, and 0.59 g-atom zinc per mol of enzyme. Initial electron paramagnetic resonance spectroscopic studies showed at least three distinct signals which appeared upon reduction of the enzyme with NADH or formate. The corresponding spin systems could be attributed to iron-sulfur centers of the enzyme. Comparative immunostaining and activity-staining experiments using cell extracts from various bacteria established immunological similarities between the soluble formate dehydrogenase of A. eutrophus and the soluble enzymes from all tested facultative autotrophs as well as from M. trichosporium.

PubMed Disclaimer

Publication types

LinkOut - more resources