Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb 1;93(3):407-11.
doi: 10.1161/01.cir.93.3.407.

Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence

Affiliations

Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence

T Yang et al. Circulation. .

Abstract

Background: Torsade de pointes often occurs with underlying hypokalemia and bradycardia. A common effect of many drugs producing torsade de pointes is block of the rapidly activating component of the cardiac delayed rectifier (IKr). In this study, we evaluated the effect of changing extracellular potassium ([K+]o) on IKr block by the nonspecific agent quinidine and by the specific IKr blocker dofetilide.

Methods and results: IKr was measured in AT-1 cells, where contaminating outward currents are absent. The drug concentration producing 50% inhibition of IKr tails (IC50) was strikingly [K+]o-dependent. Elevating [K+]o from 1 to 8 mmol/L increased the IC50 for dofetilide block from 2.7 +/- 0.9 to 79 +/- 32 nmol/L and for quinidine block from 0.4 +/- 0.1 to 3.8 +/- 1.2 mumol/L.

Conclusions: (1) The increase in drug block with low [K+]o provides a mechanism to explain the link between hypokalemia and torsade de pointes. (2) Elevations in [K+]o occur with myocardial ischemia and with rapid pacing. Possible consequences of blunted drug block with high [K+]o include loss of drug efficacy with ischemia and with rapid pacing; the latter may contribute to "reverse use-dependent" action potential prolongation. Extracellular potassium is a critical determinant of drug block of IKr, with substantial clinical implications.

PubMed Disclaimer

Publication types