Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov;28(1):111-7.
doi: 10.1006/faat.1995.1152.

Deuterium isotope effect on the metabolism of the flame retardant tris(2,3-dibromopropyl) phosphate in the isolated perfused rat liver

Affiliations

Deuterium isotope effect on the metabolism of the flame retardant tris(2,3-dibromopropyl) phosphate in the isolated perfused rat liver

G J Van Beerendonk et al. Fundam Appl Toxicol. 1995 Nov.

Abstract

The metabolism of tris(2,3-dibromopropyl) phosphate (Tris-BP) was compared with that of completely deuterated Tris-BP (D15-Tris-BP) in an isolated, recirculating rat liver perfusion system in order to determine the relative quantitative importance of two different biotransformation pathways of Tris-BP: (i) cytochrome P450-mediated metabolism and (ii) GSH S-transferase-mediated metabolism. To accomplish this we quantitated the biliary excretion of S-(3-hydroxypropyl)glutathione (GSOH) as a marker metabolite for cytochrome P450-mediated metabolism and that of S-(2,3-dihydroxypropyl) glutathione (GSOHOH) as a marker metabolite for GSH S-transferase-mediated metabolism. Complete deuterium substitution of Tris-BP significantly decreased the formation of GSOH, whereas there was no effect on the formation of GSOHOH. Because our previous studies showed a large decrease in genotoxicity of D15-Tris-BP compared to Tris-BP, the present results support our hypothesis that cytochrome P450-mediated metabolism is responsible for the genotoxic effects of Tris-BP in the rat liver.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources