Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 26;271(4):1849-52.
doi: 10.1074/jbc.271.4.1849.

Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves

Affiliations
Free article

Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves

H Ardehali et al. J Biol Chem. .
Free article

Abstract

The mammalian hexokinase (HK) family includes three closely related 100-kDa isoforms (HKI-III) that are thought to have arisen from a common 50-kDa precursor by gene duplication and tandem ligation. Previous studies of HKI indicated that a glucose 6-phosphate (Glu-6-P)-regulated catalytic site resides in the COOH-terminal half of the molecule and that the NH2-terminal half contains only a Glu-6-P binding site. In contrast, we now show that proteins representing both halves of human and rat HKII have catalytic activity and that each is inhibited by Glu-6-P. The intact enzyme and the NH2- and COOH-terminal halves of the enzyme each increase glucose utilization when expressed in Xenopus oocytes. Mutations corresponding to either Asp-209 or Asp-657 in the intact enzyme completely inactivate the NH2- and COOH-terminal half enzymes, respectively. Mutation of either of these sites results in a 50% reduction of activity in the 100-kDa enzyme. Mutation of both sites results in a complete loss of activity. This suggests that each half of the HKII molecule retains catalytic activity within the 100-kDa protein. These observations indicate that HKI and HKII are functionally distinct and have evolved differently.

PubMed Disclaimer

Publication types

LinkOut - more resources