Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb 2;255(4):589-603.
doi: 10.1006/jmbi.1996.0049.

An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues

Affiliations

An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues

M Zaccolo et al. J Mol Biol. .

Abstract

We describe a new method for random mutagenesis of DNA based on the use of a mixture of triphosphates of nucleoside analogues. The method relies on DNA amplification in vitro with Taq polymerase and in the presence of the 5'-triphosphates of 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-8H-pyrimido-[4,5-C] [1,2]oxazin-7-one(dP) and of 8-oxo-2' deoxyguanosine (8-oxodG). The newly synthesised triphosphate derivative of dP (dPTP) is an excellent substrate for Taq polymerase (Km = 22 microM versus Km = 9.5 microM for TTP); it is incorporated in place of TTP and, with a approximately fourfold lower efficiency, in place of dCTP. After 30 cycles of DNA amplification, equimolar mixtures of the four normal dNTPs and dPTP yield the following frequencies of the four transition mutations: A-->G (4.4 x 10(-2), T-->C (4.3 x 10(-2), G-->A (1.1 x 10(-2) and C-->T (1.0 x 10(-2). The triphosphate derivative of 8-oxodG (8-oxodGTP) is incorporated opposite template adenine and yields two transition mutations (A-->C and T-->G) at frequencies of 0.8 x 10(-2) and 1.2 x 10(-2) respectively. Reaction mixtures containing dPTP and 8-oxodGTP results in both dP and 8-oxodG-induced mutations and an extensive array of codon changes in the absence of insertions and deletions. The method described differs from previous mutagenesis procedures in three respects: (1) it enables very high frequencies of base substitutions (up to 1.9 x 10(-1) (2) it allows control of the mutational load via the number of DNA amplification cycles and (3) it yields both transition and transversion mutations. The procedure may find application in the generation of libraries of DNA and protein mutants from which species with improved or novel activities may be selected.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources