Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 5;218(1):154-8.
doi: 10.1006/bbrc.1996.0027.

Dexamethasone inhibits insulin binding to insulin-degrading enzyme and cytosolic insulin-binding protein p82

Affiliations
Free article

Dexamethasone inhibits insulin binding to insulin-degrading enzyme and cytosolic insulin-binding protein p82

S Harada et al. Biochem Biophys Res Commun. .
Free article

Abstract

We recently demonstrated that insulin specifically binds to several cytosolic insulin-binding proteins (CIBPs) including insulin-degrading enzyme (IDE) and CIBP p82 in cytosol isolated from H35 rat hepatoma cells. Insulin binding to these CIBPs was regulated by culture conditions, such as serum or insulin. In the present study, we examined the effect of dexamethasone on insulin binding to CIBPs in H35 cells. When the cells were treated with 100 nM dexamethasone for 24 hrs, insulin binding to IDE and CIBP p82 was decreased by about 50% without decreasing the expression level of IDE. Insulin added with the dexamethasone prevented the steroid's effect. Furthermore, dexamethasone directly blocked insulin binding to CIBPs in isolated cytosol. These results suggest that dexamethasone, directly or as a complex with other proteins, binds to IDE and CIBP p82 and changes their ability to bind insulin, possibly by inducing a conformational change or by blocking insulin binding sites. IDE was recently identified as a receptor accessory factor for androgen and glucocorticoid receptors and plays an important role in the regulation of gene transcriptional responses. Combined with previous reports, our findings suggest IDE and other CIBPs such as CIBP p82 may play a role in the cross-talk between insulin and the signal transduction pathways of steroid hormones.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources