Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 11;1273(1):13-20.
doi: 10.1016/0005-2728(95)00130-1.

Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier

Affiliations
Free article

Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier

A Devin et al. Biochim Biophys Acta. .
Free article

Abstract

The aim of this work was a thermodynamic and kinetic study of the influence of varying external osmolarity on overall oxidative phosphorylations in isolated rat liver mitochondria. When external osmolarity is increased from 100 to 400 mosM by using a non-penetrant sugar: (i) matrix volume diminishes, (ii) state 3 respiratory rate decreases when state 4 slightly varies, (iii) states 3 and 4 protonmotive force and NAD(P)H level increase, whereas oxidative phosphorylation efficiency (ATP/O) decreases. Indeed, respiratory flux versus protonmotive force relationships depend on the osmolarity considered: the lower the external osmolarity, the higher the span of overall driving force necessary for the same respiratory rate. To further investigate the mechanism of the decrease in respiratory and ATP synthesis flux leading to a lowering in oxidative phosphorylation efficiency, we determined the adenine nucleotide carrier control coefficient on respiratory and ATP synthesis rates respectively. The main result is that the adenine nucleotide carrier control coefficient on respiratory rate decreases, and conversely that adenine nucleotide carrier control on ATP synthesis rate increases, from iso- to hyperosmolarity. Furthermore, whatever the osmolarity, when state 3 respiratory rate is titrated with carboxyatractyloside, the same relationship is observed between ATP/O ratio and respiratory flux. From many previous studies, it has been shown that an increase in external osmolarity and a consequent decrease in matrix volume inhibits almost all mitochondrial proton pumps (coupling site 1 and 2 of respiratory chain, ATPase) in different ways. In this work, we show that in phosphorylating mitochondria, the adenine nucleotide carrier plays a key role: its inhibition as the external osmolarity increases lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency.

PubMed Disclaimer

Publication types

LinkOut - more resources