Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb;178(4):1094-8.
doi: 10.1128/jb.178.4.1094-1098.1996.

Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli

Affiliations

Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli

C P Tseng et al. J Bacteriol. 1996 Feb.

Abstract

Escherichia coli varies the synthesis of many of its respiratory enzymes in response to oxygen availability. These enzymes include cytochrome o oxidase (cyoABCDE) and cytochrome d oxidase (cydAB), used during aerobic cell growth, and a fumarate reductase (frdABCD), dimethyl sulfoxide/trimethylamine oxide reductase (dmsABC), and nitrate reductase (narGHJI), used during anaerobic respiratory conditions. To determine how different levels of oxygen affect the expression of each operon, strains containing cyo-lacZ, cyd-lacZ, frdA-lacZ, dmsA-lacZ, and narG-lacZ fusions were grown in continuous culture at various degrees of air saturation. The basal-level expression of the anaerobic respiratory genes, frdABCD, dmsABC, and narGHJI, occurred when the air saturation of the medium was above 20%; as the saturation was reduced to below 10% (ca. 2% oxygen), the expression rapidly increased and reached a maximal level at 0% air. In contrast, cyoABCDE gene expression was lowest under anaerobic conditions while cyd-lacZ expression was about 40% of its maximum level. When the oxygen level was raised into the microaerophilic range (ca. 7% air saturation) cyd-lacZ expression was maximal while cyo-lacZ expression was elevated by about fivefold. As the air level was raised to above 20% saturation, cyd-lacZ expression fell to a basal level while cyo-lacZ expression was increased to its maximum level. The role of the Fnr and ArcA regulatory proteins in this microaerophilic control of respiratory gene expression was documented: whereas Fnr function as an aerobic/anaerobic switch in the range of 0 to 10% air saturation, ArcA exerted its control in the 10 to 20% range. These two transcriptional regulators coordinate the hierarchial control of respiratory pathway gene expression in E. coli to ensure the optimal use of oxygen in the cell environment.

PubMed Disclaimer

References

    1. J Bacteriol. 1978 Apr;134(1):115-24 - PubMed
    1. Res Microbiol. 1994 Jun-Aug;145(5-6):437-50 - PubMed
    1. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1888-92 - PubMed
    1. J Bacteriol. 1989 Jul;171(7):3817-23 - PubMed
    1. J Bacteriol. 1990 Oct;172(10):6020-5 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources