Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Jun;16(6):1067-73.
doi: 10.1111/j.1365-2958.1995.tb02332.x.

Treponema pallidum and the quest for outer membrane proteins

Affiliations
Review

Treponema pallidum and the quest for outer membrane proteins

J D Radolf. Mol Microbiol. 1995 Jun.

Abstract

Treponema pallidum, the syphilis spirochaete, has a remarkable ability to evade the humoral and cellular responses it elicits in infected hosts. Although formerly attributed to the presence of an outer coat comprised of serum proteins and/or mucopolysaccharides, current evidence indicates that the immuno-evasiveness of this bacterium is largely the result of its unusual molecular architecture. Based upon a combination of molecular, biochemical, and ultrastructural data, it is now believed that the T. pallidum outer membrane (OM) contains a paucity of poorly immunogenic transmembrane proteins ('rare outer membrane proteins') and that its highly immunogenic proteins are lipoproteins anchored predominantly to the periplasmic leaflet of the cytoplasmic membrane. The presence in the T. pallidum OM of a limited number of transmembrane proteins has profound implications for understanding syphilis pathogenesis as well as treponemal physiology. Two major strategies for molecular characterization of rare outer membrane proteins have evolved. The first involves the identification of candidate OM proteins as fusions with Escherichia coli alkaline phosphatase. The second involves the characterization of candidate OM proteins identified in outer membranes isolated from virulent T. pallidum. Criteria to define candidate OM proteins and for definitive identification of rare OM proteins are proposed as a guide for future studies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources