Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Sep-Oct;17(5):301-6.
doi: 10.1016/0387-7604(95)00079-q.

Neurotransmitters and vulnerability of the developing brain

Affiliations
Free article
Review

Neurotransmitters and vulnerability of the developing brain

M V Johnston. Brain Dev. 1995 Sep-Oct.
Free article

Abstract

The immature human brain undergoes remarkable organizational changes during intrauterine and postnatal life. These changes create potential temporal 'windows' of selective vulnerability to damage. For example, the temporary germinal matrix is vulnerable to hemorrhage in the third trimester fetus and premature infant. The immature oligodendroglia present in developing white matter of the fetus are also vulnerable to injury producing periventricular leukomalacia. Similar changes take place in the synapses that make up the infant's neuronal circuitry. In human cerebral cortex, synapses are produced in greater than adult numbers by postnatal age 2 years and then reduced over the next decade. Over the same period receptors for glutamate, the most important excitatory neurotransmitter, change their characteristics to allow them to participate in activity dependent synaptic plasticity. For example, the immature N-methyl-D-aspartate (NMDA) type glutamate receptor/channel complex, which plays important roles in long term potentiation (LTP), neuronal migration and synaptic pruning, contains subunits that allow the channel to be opened more easily for a longer period than adult channels. These developmental changes make the immature brain selectively vulnerable to NMDA receptor overstimulation that can occur during hypoxia-ischemia and other insults. Several types of neuropathology in the developing brain can be understood on the basis of these organizational principles.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources