Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 26;218(3):772-6.
doi: 10.1006/bbrc.1996.0137.

4-Hydroxynonenal triggers Ca2+ influx in isolated rat hepatocytes

Affiliations

4-Hydroxynonenal triggers Ca2+ influx in isolated rat hepatocytes

R Carini et al. Biochem Biophys Res Commun. .

Abstract

Addition of micromolar concentrations of 4-hydroxynonenal (4-HNE), a reactive end-product of lipid peroxidation, to isolated rat hepatocytes was found to cause an early and transient increase in cytosolic Ca2+ concentration followed by a more pronounced and progressive elevation. Such a late effect of 4-HNE was prevented by chelation of extracellular Ca2+ with EGTA or by the addition of GdCl3, which is known to block the activity of store operated Ca2+ channels in the hepatocyte plasma membrane. Moreover, the preincubation of isolated hepatocytes with the phospholipase C inhibitor U73122 resulted in a complete inhibition of both the early increase of cytosolic Ca2+ and the subsequent Ca2+ inflow. When 4-HNE was added to the hepatocytes 5 min after the emptying of intracellular Ca2+ pools by thapsigargin, the aldehyde caused a further increase in the accumulation of Ca2+ which was prevented in the presence of GdCl3. Taken together these results indicate that in hepatocytes 4-HNE causes Ca2+ inflow across GdCl3-sensitive Ca2+ channels. The mechanism responsible for such an effect is triggered by the emptying of intracellular Ca2+ pools likely resulting from 4-HNE mediated stimulation of phospholypase C, but 4-HNE also appears to interfere with the channel protein(s) or with the mechanism(s) regulating capacitative Ca2+ inflow.

PubMed Disclaimer

Publication types

LinkOut - more resources