Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;352(3):283-90.
doi: 10.1007/BF00168558.

BIMT 17, a 5-HT1A receptor agonist/5-HT2A receptor antagonist, directly activates postsynaptic 5-HT inhibitory responses in the rat cerebral cortex

Affiliations

BIMT 17, a 5-HT1A receptor agonist/5-HT2A receptor antagonist, directly activates postsynaptic 5-HT inhibitory responses in the rat cerebral cortex

F Borsini et al. Naunyn Schmiedebergs Arch Pharmacol. 1995 Sep.

Abstract

BIMT 17 (1-[2-[4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1-10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1-1000 micrograms/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4-[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1-10 micrograms/kg and 0.1-3 micrograms/kg i.v. respectively, and reduced it at high doses, 30-300 micrograms/kg and 10-30 micrograms/kg i.v., respectively. The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 micrograms/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OH-DPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Psychopharmacol Bull. 1992;28(3):261-74 - PubMed
    1. J Pharmacol Exp Ther. 1992 Aug;262(2):451-63 - PubMed
    1. Neuropharmacology. 1983 Jun;22(6):677-85 - PubMed
    1. Eur J Pharmacol. 1991 Aug 29;201(2-3):163-9 - PubMed
    1. Brain Res. 1983 Dec 19;289(1-2):109-19 - PubMed

MeSH terms

LinkOut - more resources