The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap
- PMID: 8586257
- DOI: 10.1111/j.1574-6968.1995.tb07925.x
The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap
Abstract
Sublethal heat and ethanol exposure induce essentially identical stress responses in yeast. These responses are characterized by the induction of heat shock proteins, proteins requiring a temperature above about 35 degrees C or ethanol levels above a threshold level of 4-6% (v/v) for strong induction. One induced protein, Hsp104, contributes to both thermotolerance and ethanol tolerance, while others are anti-oxidant enzymes. Heat and ethanol stress cause similar changes to plasma membrane protein composition, reducing the levels of plasma membrane H(+)-ATPase protein and inducing the plasma membrane-associated Hsp30. Both stresses also stimulate the activity of the fraction of H(+)-ATPase remaining in the plasma membrane. The resulting enhancement to catalysed proton efflux from the cell represents a considerable energy demand, yet may help to counteract the adverse effects for homeostasis of the increased membrane permeability that results from stress.
Similar articles
-
Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.Cell Stress Chaperones. 1997 Mar;2(1):12-24. doi: 10.1379/1466-1268(1997)002<0012:htipmh>2.3.co;2. Cell Stress Chaperones. 1997. PMID: 9250391 Free PMC article.
-
Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold.Microbiology (Reading). 1994 Nov;140 ( Pt 11):3031-8. doi: 10.1099/13500872-140-11-3031. Microbiology (Reading). 1994. PMID: 7812443
-
The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase.Eur J Biochem. 1992 Jun 15;206(3):635-40. doi: 10.1111/j.1432-1033.1992.tb16968.x. Eur J Biochem. 1992. PMID: 1535043
-
Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.Appl Microbiol Biotechnol. 2009 Nov;85(2):253-63. doi: 10.1007/s00253-009-2223-1. Epub 2009 Sep 16. Appl Microbiol Biotechnol. 2009. PMID: 19756577 Review.
-
Ethanol and thermotolerance in the bioconversion of xylose by yeasts.Adv Appl Microbiol. 2000;47:221-68. doi: 10.1016/s0065-2164(00)47006-1. Adv Appl Microbiol. 2000. PMID: 12876799 Review.
Cited by
-
Peculiar H⁺ homeostasis of Saccharomyces cerevisiae during the late stages of wine fermentation.Appl Environ Microbiol. 2012 Sep;78(17):6302-8. doi: 10.1128/AEM.01355-12. Epub 2012 Jun 29. Appl Environ Microbiol. 2012. PMID: 22752170 Free PMC article.
-
Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.Oncotarget. 2016 May 24;7(21):29958-76. doi: 10.18632/oncotarget.8673. Oncotarget. 2016. PMID: 27074556 Free PMC article.
-
Heat shock drives genomic instability and phenotypic variations in yeast.AMB Express. 2020 Aug 17;10(1):146. doi: 10.1186/s13568-020-01091-7. AMB Express. 2020. PMID: 32804300 Free PMC article.
-
Mutations causing childhood ataxia with central nervous system hypomyelination reduce eukaryotic initiation factor 2B complex formation and activity.Mol Cell Biol. 2004 Mar;24(6):2352-63. doi: 10.1128/MCB.24.6.2352-2363.2004. Mol Cell Biol. 2004. PMID: 14993275 Free PMC article.
-
Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock.BMC Bioinformatics. 2006 Apr 3;7:184. doi: 10.1186/1471-2105-7-184. BMC Bioinformatics. 2006. PMID: 16584550 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases