Principles of protein-protein recognition from structure to thermodynamics
- PMID: 8589061
- DOI: 10.1016/0300-9084(96)88166-1
Principles of protein-protein recognition from structure to thermodynamics
Abstract
Specific recognition is illustrated by X-ray structures of protease-inhibitor, antigen-antibody and other high affinity complexes including five electron transfer complexes. We attempt to give a physical definition to affinity and specificity on the basis of these data. In a protein-protein complex, specific recognition results from the assembly of complementary surfaces into well-packed interfaces that cover about 1500 A2 and contain about ten hydrogen bonds. These interfaces are larger than between molecules in protein crystals, and smaller than between subunits in oligomeric proteins. We relate the size and chemical nature of interfaces in complexes to the thermodynamical parameters that characterize affinity: the heat capacity and free enthalpy (Gibbs energy) of dissociation at equilibrium, the activation free enthalpy for the dissociation reaction. The same structural and thermodynamical parameters are inadequate for representing the specificity of recognition. We propose instead to describe specificity with the help of statistical physics, and we illustrate the application of the random energy model to antigen-antibody recognition by analyzing results of computer simulations by docking.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources