Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul-Aug;8(4):593-601.
doi: 10.1094/mpmi-8-0593.

Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene

Affiliations

Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene

R H Proctor et al. Mol Plant Microbe Interact. 1995 Jul-Aug.

Abstract

The production of trichothecene mycotoxins by some plant pathogenic species of Fusarium is thought to contribute to their virulence. Gibberella zeae (F. graminearum) is an important cereal pathogen that produces the trichothecene deoxynivalenol. To determine if trichothecene production contributes to the virulence of G. zeae, we generated trichothecene-deficient mutants of the fungus by gene disruption. The disrupted gene, Tri5, encodes the enzyme trichodiene synthase, which catalyzes the first step in trichothecene biosynthesis. To disrupt Tri5, G. zeae was transformed with a plasmid carrying a doubly truncated copy of the Tri5 coding region interrupted by a hygromycin B resistance gene. Tri5- transformants were selected by screening for the inability to produce trichothecenes and by Southern blot analysis. Tri5- strains exhibited reduced virulence on seedlings of Wheaton wheat and common winter rye, but wild-type virulence on seedlings of Golden Bantam maize. On Caldwell and Marshall wheat and Porter oat seedlings, Tri5- strains were inconsistent in causing less disease than their wild-type progenitor strain. Head blight developed more slowly on Wheaton when inoculated with Tri5- mutants than when inoculated with wild-type strains. These results suggest that trichothecene production contributes to the virulence of G. zeae on some hosts.

PubMed Disclaimer

Similar articles

Cited by

Associated data

LinkOut - more resources