Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;6(2):153-62.
doi: 10.1007/BF00211779.

Spectral density function mapping using 15N relaxation data exclusively

Affiliations

Spectral density function mapping using 15N relaxation data exclusively

N A Farrow et al. J Biomol NMR. 1995 Sep.

Abstract

A method is presented for the determination of values of the spectral density function, J(omega), describing the dynamics of amide bond vectors from 15N relaxation parameters alone. Assuming that the spectral density is given by the sum of Lorentzian functions, the approach allows values of J(omega) to be obtained at omega = 0, omega N and 0.870 omega H, where omega N and omega H are Larmor frequencies of nitrogen and proton nuclei, respectively, from measurements of 15N T1, T2 and 1H-15N steady-state NOE values at a single spectrometer frequency. Alternatively, when measurements are performed at two different spectrometer frequencies of i and j MHz, J(omega) can be mapped at omega = 0, omega iN, omega jN, 0.870 omega iH and 0.870 omega iH, where omega iN, for example, is the 15N Larmor frequency for a spectrometer operating at 1 MHz. Additionally, measurements made at two different spectrometer frequencies enable contributions to transverse relaxation from motions on millisecond-microsecond time scales to be evaluated and permit assessment of whether a description of the internal dynamics is consistent with a correlation function consisting of a sum of exponentials. No assumptions about the specific form of the spectral density function describing the dynamics of the 15N-NH bond vector are necessary, provided that dJ(omega)/d omega is relatively constant between omega = omega H + omega N to omega = omega H - omega N. Simulations demonstrate that the method is accurate for a wide range of protein motions and correlation times, and experimental data establish the validity of the methodology. Results are presented for a folded and an unfolded form of the N-terminal SH3 domain of the protein drk.

PubMed Disclaimer

References

    1. Biophys J. 1977 Dec;20(3):289-305 - PubMed
    1. Biochemistry. 1981 Aug 4;20(16):4618-28 - PubMed
    1. Biochemistry. 1994 May 17;33(19):5984-6003 - PubMed
    1. Biochemistry. 1980 Nov 11;19(23):5189-96 - PubMed
    1. Biochemistry. 1992 May 12;31(18):4394-406 - PubMed

Publication types