Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Oct;41(10):855-61.
doi: 10.1139/m95-118.

Coenzyme A ligases involved in anaerobic biodegradation of aromatic compounds

Affiliations
Review

Coenzyme A ligases involved in anaerobic biodegradation of aromatic compounds

R Villemur. Can J Microbiol. 1995 Oct.

Abstract

Bacterial strains and consortia of bacteria have been isolated for their ability to degrade, under anaerobic conditions, homocyclic monoaromatic compounds, such as phenolic compounds, methylbenzenes, and aminobenzenes. As opposed to aerobic conditions where these compounds are degraded via dihydroxyl intermediates introduced by oxygenases, most of aromatic compounds under anaerobic conditions are metabolized via aromatic acid intermediates, such as nitrobenzoates, hydroxybenzoates, or phenylacetate. These aromatic acids are then transformed to benzoate before the reduction and the cleavage of the benzene ring to aliphatic acid products. One step of these catabolic pathways is the addition of a coenzyme A (CoA) residue to the carboxylic group of the aromatic acids by CoA ligases. This addition would facilitate the enzymatic transformation of the aromatic acids to benzoyl-CoA and the subsequent degradation steps of this latter molecule. Aromatic acid-CoA ligases have been characterized or detected from several bacterial strains that were grown under anaerobic conditions and from an anaerobic syntrophic consortium. They are also involved in the degradation of some aromatic compounds under aerobic conditions. They have molecular masses varying between 48 and 61 kDa, require ATP, Mg2+, and CoASH as cofactors, and have an optimum pH of 8.2-9.3. Amino acid sequence analyses of four aromatic acid-CoA ligases have revealed that they are related to an AMP-binding protein family. Aromatic acid-CoA ligases expressed in anaerobically grown bacterial cells are strictly regulated by the anaerobic conditions and the presence of aromatic cells.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources