Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1996 Mar 7;334(10):624-9.
doi: 10.1056/NEJM199603073341003.

Inhaled nitric oxide for high-altitude pulmonary edema

Affiliations
Free article
Clinical Trial

Inhaled nitric oxide for high-altitude pulmonary edema

U Scherrer et al. N Engl J Med. .
Free article

Abstract

Background: Pulmonary hypertension is a hallmark of high-altitude pulmonary edema and may contribute to its pathogenesis. When administered by inhalation, nitric oxide, an endothelium-derived relaxing factor, attenuates the pulmonary vasoconstriction produced by short-term hypoxia.

Methods: We studied the effects of inhaled nitric oxide on pulmonary-artery pressure and arterial oxygenation in 18 mountaineers prone to high-altitude pulmonary edema and 18 mountaineers resistant to this condition in a high altitude laboratory (altitude, 4559 m). We also obtained lung-perfusion scans before and during nitric oxide inhalation to gain further insight into the mechanism of action of nitric oxide.

Results: In the high-altitude laboratory, subjects prone to high-altitude pulmonary edema had more pronounced pulmonary hypertension and hypoxemia than subjects resistant to high-altitude pulmonary edema. Arterial oxygen saturation was inversely related to the severity of pulmonary hypertension (r=-0.50, P=0.002). In subjects prone to high-altitude pulmonary edema, the inhalation of nitric oxide (40 ppm for 15 minutes) produced a decrease in mean (+/-SD) systolic pulmonary-artery pressure that was three times larger than the decrease in subjects resistant to such edema (25.9+/-8.9 vs. 8.7+/-4.8 mm Hg, P<0.001). Inhaled nitric oxide improved arterial oxygenation in the 10 subjects who had radiographic evidence of pulmonary edema (arterial oxygen saturation increased from 67+/-10 to 73+/-12 percent, P=0.047), whereas it worsened oxygenation in subjects resistant to high-altitude pulmonary edema. The nitric oxide-induced improvement in arterial oxygenation in subjects with high-altitude pulmonary edema was accompanied by a shift in blood flow in the lung away from edematous segments and toward nonedematous segments.

Conclusions: The inhalation of nitric oxide improves arterial oxygenation in high-altitude pulmonary edema, and this beneficial effect may be related to its favorable action on the distribution of blood flow in the lungs. A defect in nitric nitric oxide synthesis may contribute to high-altitude pulmonary edema.

PubMed Disclaimer

Comment in

  • High-altitude pulmonary edema.
    Jerome EH, Severinghaus JW. Jerome EH, et al. N Engl J Med. 1996 Mar 7;334(10):662-3. doi: 10.1056/NEJM199603073341013. N Engl J Med. 1996. PMID: 8592535 No abstract available.
  • High-altitude illness.
    O'Brien B. O'Brien B. N Engl J Med. 2001 Oct 25;345(17):1280; author reply 1280-1. N Engl J Med. 2001. PMID: 11680464 No abstract available.

Publication types

MeSH terms