Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov;7(8):803-20.
doi: 10.1016/0898-6568(95)02008-x.

A significant fraction of calcium transients in intact guinea pig ventricular myocytes is mediated by Na(+)-Ca2+ exchange

Affiliations

A significant fraction of calcium transients in intact guinea pig ventricular myocytes is mediated by Na(+)-Ca2+ exchange

C M Santi et al. Cell Signal. 1995 Nov.

Abstract

Ca2+ mobilization elicited by simulation with brief pulses of high K+ were monitored with confocal laser scanned microscopy in intact, guinea pig cardiac myocytes loaded with the calcium indicator fluo-3. Single wavelength ratioing of fluorescence images obtained after prolonged integration times revealed non-uniformities of intracellular Ca2+ changes across the cell, suggesting the presence of significant spatial Ca2+ gradients. Treatment with 20 microM ryanodine, an inhibitor of Ca2+ release from the SR, and 10 microM verapamil, a calcium channel blocker, reduced by 42% and 76% respectively the changes in [Ca2+]i elicited by membrane depolarization. The overall spatial distribution of [Ca2+]i changes appeared unchanged. Ca2+ transients recorded in the presence of verapamil and ryanodine (about 20% of the size of control responses), diminished in the presence of 50 microM 2-4 Dichlorbenzamil (DCB) or 5 mM nickel, two relatively specific inhibitors of the Na+/Ca2+ exchange mechanism. Conversely, when the reversal potential of the Na+/Ca2+ exchange was shifted to negative potentials by lowering [NA+]o or by increasing [Na+]i by treatment with 20 microM monensin, the amplitude of these Ca2+ transients increased. Ca2+ transients elicited by membrane depolarization and largely mediated by reverse operation of Na(+)-Ca2+ exchange could be recorded in the presence of ryanodine, verapamil and monensin. These finding suggest that in intact guinea pig cardiac cells, Ca2+ influx through the Na+/Ca2+ exchange mechanism activated by a membrane depolarization in the physiological range can be sufficient to play a significant role in excitation-contraction coupling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources