Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;17(5):989-99.
doi: 10.1111/j.1365-2958.1995.mmi_17050989.x.

Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis

Affiliations

Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis

V Blanc et al. Mol Microbiol. 1995 Sep.

Abstract

A multidrug resistance gene (mdr) has been cloned from Streptomyces pristinaespiralis, a producer of two antibiotics having synergistic activities together known as pristinamycin. This gene, ptr, provides resistance not only to two structurally dissimilar compounds (pristinamycin I, PI; pristinamycin II, PII) and the natural pristinamycin mixture but also to rifampicin. Mutagenesis and subcloning of ptr localized it to a 2 kb region which was sequenced and analyzed. It contained an open reading frame of 1506 bp which encoded a putative membrane protein with 14 hydrophobic domains, and showed sequence similarity to a superfamily of bacterial proteins that employ transmembrane electrochemical gradients to catalyse active efflux of various antibiotics and toxic compounds. Ptr was most similar to a subfamily which included other mdr genes and antibiotic transport genes associated with antibiotic biosynthetic gene clusters in actinomycetes. In vitro coupled transcription-translation experiments were used to identify the ptr gene product. Analysis of the upstream region did not reveal a divergently transcribed repressor gene, as is the case for several related resistance determinants involved in antibiotic transport, suggesting that ptr is regulated by a different mechanism. Transcriptional analyses of this gene, carried out in both S. pristinaespiralis and Streptomyces lividans, indicated the same transcriptional start point and predicted -10 and -35 hexamers which were somewhat similar to Streptomyces vegetative-type promoters.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources