Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Dec:82-83:751-6.
doi: 10.1016/0378-4274(95)03593-1.

Dose-response relationships for carcinogens

Affiliations
Review

Dose-response relationships for carcinogens

J A Swenberg et al. Toxicol Lett. 1995 Dec.

Abstract

Biotransformation of chemical carcinogens involves both metabolic activation and detoxication. The molecular dose present on DNA as adducts represents a balance between these two pathways (formation) and DNA repair. All of these are enzymatic processes subject to saturation. When none of the pathways is saturated, linear molecular dosimetry is expected, whereas if metabolic activation is saturated, a supralinear response occurs. If detoxication or DNA repair is saturated, a sublinear response occurs. With chronic exposure, steady-state concentrations of DNA adducts develop and these follow the same patterns. With several alkylating agents, multiple adducts are formed. The extent of formation is chemically defined, but different DNA repair pathways can be involved for different adducts. By understanding the molecular dose and biology of each adduct and comparing these to the dose-response for tumor induction, it may be possible to identify the most appropriate biomarkers for risk assessment. Recently, endogenous DNA adducts identical to those induced by known human carcinogens have been identified. These endogenously formed adducts may play an important role in human carcinogenesis.

PubMed Disclaimer

Publication types

LinkOut - more resources