Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar 7;250(4):515-22.
doi: 10.1007/BF02174040.

The levels of repair of endonuclease III-sensitive sites, 6-4 photoproducts and cyclobutane pyrimidine dimers differ in a point mutant for RAD14, the Saccharomyces cerevisiae homologue of the human gene defective in XPA patients

Affiliations

The levels of repair of endonuclease III-sensitive sites, 6-4 photoproducts and cyclobutane pyrimidine dimers differ in a point mutant for RAD14, the Saccharomyces cerevisiae homologue of the human gene defective in XPA patients

S H Reed et al. Mol Gen Genet. .

Abstract

In the accompanying paper we demonstrated that endonuclease III-sensitive sites in the MAT alpha and HML alpha loci of Saccharomyces cerevisiae are repaired by the Nucleotide Excision Repair (NER) pathway. In the current report we investigated the repair of endonuclease III sites, 6-4 photoproducts and cyclobutane pyrimidine dimers (CPDs) in a rad14-2 point mutant and in a rad14 deletion mutant. The RAD14 gene is the yeast homologue of the human gene that complements the defect in cells from xeroderma pigmentosum (XP) patients belonging to complementation group A. In the point mutant we observed normal repair of endonuclease III site (i.e. as wild type), but no removal of CPDs at the MAT alpha and HML alpha loci. Similar experiments were undertaken using the recently created rad14 deletion mutant. Here, neither endonuclease III sites nor CPDs were repaired in MATa or HMRa. Thus the point mutant appears to produce a gene product that permits the repair of endonuclease III sites, but prevents the repair of CPDs. Previously it was found that in the genome overall, repair of 6-4 photoproducts was less impaired that repair of CPDs in the point mutant. The deletion mutant repairs neither CPDs nor 6-4 photoproducts in the genome overall. This finding is consistent with the RAD14 protein being involved in lesion recognition in yeast. A logical interpretation is that the rad14-2 point mutant produces a modified protein that enables the cell to repair endonuclease III sites and 6-4 photoproducts much more efficiently than CPDs. This modified protein may aid studies designed to elucidate the role of the RAD14 protein in lesion recognition.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1992 Feb 6;355(6360):555-8 - PubMed
    1. Mutat Res. 1994 Nov;315(3):261-73 - PubMed
    1. Mol Cell Biol. 1987 Sep;7(9):3353-7 - PubMed
    1. Mutat Res. 1993 Mar;293(3):233-40 - PubMed
    1. Nature. 1990 Nov 1;348(6296):73-6 - PubMed

MeSH terms

LinkOut - more resources