Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar 1;256(3):436-48.
doi: 10.1006/jmbi.1996.0099.

The Bacillus subtilis response regulator Spo0A stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes

Affiliations

The Bacillus subtilis response regulator Spo0A stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes

T H Bird et al. J Mol Biol. .

Abstract

Sporulation in Bacillus subtilis is dependent on the response regulator Spo0A, which both represses and activates transcription in vitro. The activity of Spo0A is increased by phosphorylation. We previously demonstrated that the phosphorylation increased the ability of Spo0A to stimulate in vivo transcription from the promoter for the spoIIG operon, one of the operons known to be regulated by Spo0A in vivo. In the work reported here we have examined the kinetics of transcription initiation at the spoIIG operon promoter using a single round transcription assay and the kinetics of formation of spoIIG promoter-RNA polymerase complexes using DNase I footprinting. Both the kinetic assays and the footprint assays indicated that the initial binding of the polymerase to the template was not dependent on the presence of Spo0A. The phosphorylated form of Spo0A stimulated the rate of initiation by affecting a step that occurred after the initial interaction of the polymerase with the template. Phosphorylation of Spo0A may stimulate transcription by modifying preinitiation complexes containing the polymerase and the promoter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources