Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Feb;24(2 Suppl):S57-68.

Cerebral resuscitation from cardiac arrest: pathophysiologic mechanisms

Affiliations
  • PMID: 8608707
Review

Cerebral resuscitation from cardiac arrest: pathophysiologic mechanisms

P Vaagenes et al. Crit Care Med. 1996 Feb.

Abstract

Both the period of total circulatory arrest to the brain and postischemic-anoxic encephalopathy (cerebral postresuscitation syndrome or disease), after normothermic cardiac arrests of between 5 and 20 mins (no-flow), contribute to complex physiologic and chemical derangements. The best documented derangements include the delayed protracted inhomogeneous cerebral hypoperfusion (despite controlled normotension), excitotoxicity as an explanation for selectively vulnerable brain regions and neurons, and free radical-triggered chemical cascades to lipid peroxidation of membranes. Protracted hypoxemia without cardiac arrest (e.g., very high altitude) can cause angiogenesis; the trigger of it, which lyses basement membranes, might be a factor in post-cardiac arrest encephalopathy. Questions to be explored include: What are the changes and effects on outcome of neurotransmitters (other than glutamate), of catecholamines, of vascular changes (microinfarcts seen after asphyxia), osmotic gradients, free-radical reactions, DNA cleavage, and transient extracerebral organ malfunction? For future mechanism-oriented studies of the brain after cardiac arrest and innovative cardiopulmonary-cerebral resuscitation, increasingly reproducible outcome models of temporary global brain ischemia in rats and dogs are now available. Disagreements exist between experienced investigative groups on the most informative method for quantitative evaluation of morphologic brain damage. There is agreement on the desirability of using not only functional deficit and chemical changes, but also morphologic damage as end points.

PubMed Disclaimer

Publication types