Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar;24(4):559-67.

Activation of human monocyte functions by tumor necrosis factor: rapid priming for enhanced release of superoxide and erythrophagocytosis, but no direct triggering of superoxide release

Affiliations
  • PMID: 8608807

Activation of human monocyte functions by tumor necrosis factor: rapid priming for enhanced release of superoxide and erythrophagocytosis, but no direct triggering of superoxide release

S Kitagawa et al. Exp Hematol. 1996 Mar.

Abstract

Tumor necrosis factor (TNF), like granulocyte-macrophage colony-stimul ating factor (GM-CSF), rapidly primed human monocytes for enhanced release of superoxide (O-2) stimulated by receptor-mediated agonists, N-formyl-methionyl-leucyl-phenylalanine (FMLP) and concanavalin A (Con A), but not by phorbol myristate acetate (PMA), which bypasses the receptors to stimulate the cells. The optimal priming was obtained by pretreatment of suspended monocytes with 10 U/mL TNF for 10 minutes at 37 degrees C. The potency of the maximal priming effect was TNF> GM-CSF, and the combined effect of TNF and GM-CSF was greater than that of each cytokine alone. GM-CSF induced an increase in cytoplasmic pH but TNF did not. These findings suggest that TNF and GM-CSF activate monocytes through different mechanisms. TNF and GM-CSF by themselves never triggered O-2 release in suspended monocytes or monocytes adherent to endothelial cells, although both cytokines triggered massive release of O-2 in human neutrophils. In additions, TNF and GM-CSF induced tyrosine phosphorylation of a 42-kD protein in neutrophils but not in monocytes. These findings suggest that the TNF-receptor- or GM-CSF-receptor-mediated signaling pathways for triggering O-(2) release is active in neutrophils but inactive or defective in monocytes. TNF also enhanced phagocytosis of sialidase-treated autologous erythrocytes by monocytes, and this effect was further potentiated in the presence of autologous fresh serum. The significant enhancement of erythrophagocytosis was obtained at 1 U/mL TNF. At this concentration of TNF, the expression of C3bi-receptor (CD11b/CD18) was upregulated. These findings show that TNF rapidly primes human monocytes for enhanced release of O-(2) and erythrophagocytosis and suggest that TNF activates monocytes through autocrine or paracrine mechanisms at the inflammatory sites inasmuch as TNF is primarily produced by activated monocytes/macrophages.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources