Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May;64(5):1724-35.
doi: 10.1128/iai.64.5.1724-1735.1996.

A hemoglobin-binding outer membrane protein is involved in virulence expression by Haemophilus ducreyi in an animal model

Affiliations

A hemoglobin-binding outer membrane protein is involved in virulence expression by Haemophilus ducreyi in an animal model

M K Stevens et al. Infect Immun. 1996 May.

Abstract

Haemophilus ducreyi exhibits a requirement for exogenously supplied heme for aerobic growth in vitro. Nine of ten wild-type isolates of H. ducreyi were shown to contain a readily detectable hemoglobin-binding activity. Spontaneous hemoglobin-binding-negative mutants of two of these wild-type isolates lost the ability to express an outer membrane protein with an apparent molecular mass of approximately 100 kDa. Similarly, the single wild-type isolate that lacked the ability to bind hemoglobin also appeared to lack expression of this same 100-kDa protein. A monoclonal antibody (5A9) to this 100-kDa protein was used to identify a recombinant clone which possessed an H. ducreyi chromosomal fragment containing the gene encoding the 100-kDa protein; this protein was designated hemoglobin utilization protein A (HupA). Nucleotide sequence analysis of the hupA gene revealed that the predicted protein, with a calculated molecular mass of 108 kDa, was similar to TonB-dependent outer membrane proteins of other bacteria. Increasing the concentration of heme in the growth medium resulted in decreased expression of the HupA protein. Mutant analysis was used to prove that the HupA protein was essential for the utilization by H. ducreyi of both hemoglobin and hemoglobin-haptoglobin as sources of heme in vitro. In addition, it was found that an isogenic hupA mutant was less virulent than the wild-type parent strain in the temperature-dependent rabbit model for dermal lesion production by H. ducreyi.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Med Microbiol. 1974 Aug;7(3):359-65 - PubMed
    1. J Bacteriol. 1994 Jun;176(11):3269-77 - PubMed
    1. Antimicrob Agents Chemother. 1978 Apr;13(4):608-12 - PubMed
    1. Infect Immun. 1982 Apr;36(1):80-8 - PubMed
    1. Methods Enzymol. 1983;91:227-36 - PubMed

Publication types

MeSH terms

Associated data