Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr;82(4):770-4.
doi: 10.1097/00000539-199604000-00017.

Metabolism of compound A by renal cysteine-S-conjugate beta-lyase is not the mechanism of compound A-induced renal injury in the rat

Affiliations

Metabolism of compound A by renal cysteine-S-conjugate beta-lyase is not the mechanism of compound A-induced renal injury in the rat

J L Martin et al. Anesth Analg. 1996 Apr.

Abstract

Compound A [CF2 = C(CF3)OCH2F], a vinyl ether produced by CO2 absorbents acting on sevoflurane, can produce corticomedullary junction necrosis (injury to the outer stripe of the outer medullary layer, i.e., corticomedullary junction) in rats. Several halogenated alkenes produce a histologically similar corticomedullary necrosis by converting glutathione conjugates of these alkenes to halothionoacetyl halides. To test whether this mechanism explained the nephrotoxicity of Compound A, we blocked three metabolic steps which would lead to formation of a halothionoacetyl halide: 1) we depleted glutathione by administering dl-buthionine-S, R-sulfoximine (BSO); 2) we blocked cysteine S-conjugate formation by administering acivicin (AT-125); and 3) we inhibited subsequent metabolism by renal cysteine conjugate beta-lyase to the nephrotoxic halothionoacetyl halides by administering aminooxyacetic acid (AOAA). These treatments were given alone or in combination to separate groups of 10 or 20 Wistar rats before their exposure to Compound A. We hypothesized that blocking these metabolic steps should decrease the injury produced by breathing 150 ppm of Compound A for 3 h. However, we found either no change or an increase in renal injury, suggesting that this pathway mediates detoxification rather than toxicity. Our findings suggest that the cysteine-S-conjugate-mediated pathway is not the mechanism of Compound A nephrotoxicity and, therefore, observed interspecies differences in the activity of this activating pathway may not be relevant in the prediction of the nephrotoxic potential of Compound A in clinical practice.

PubMed Disclaimer

Publication types

MeSH terms