Multiple mechanisms of Na+ channel--linked long-QT syndrome
- PMID: 8620612
- DOI: 10.1161/01.res.78.5.916
Multiple mechanisms of Na+ channel--linked long-QT syndrome
Abstract
Inheritable long-QT syndrome (LQTS) is a disease in which delayed ventricular repolarization leads to cardiac arrhythmias and the possibility of sudden death. In the chromosome 3-linked disease, one mutation of the cardiac Na+ channel gene results in a deletion of residues 1505 to 1507 (Delta KPQ), and two mutation result in substitutions (N1325S and R1644H). We compared all three mutant-channel phenotypes by heterologous expression in Xenopus oocytes. Each produced a late phase of inactivation-resistant, mexiletine- and tetrodotoxin-sensitive whole-cell currents, but the underlying mechanisms were different at the single-channel level. N1325S and R1644H showed dispersed reopenings after the initial transient, whereas Delta KPQ showed both dispersed reopenings and long-lasting bursts. Thus, two distinct biophysical defects underlie the in vitro phenotype of persistent current in Na+ channel-linked LQTS, and the additive effects of both are responsible for making the Delta KPQ phenotype the most severe.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
