Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May;45(5):580-6.
doi: 10.2337/diab.45.5.580.

A fatty acid-induced decrease in pyruvate dehydrogenase activity is an important determinant of beta-cell dysfunction in the obese diabetic db/db mouse

Affiliations

A fatty acid-induced decrease in pyruvate dehydrogenase activity is an important determinant of beta-cell dysfunction in the obese diabetic db/db mouse

Y P Zhou et al. Diabetes. 1996 May.

Abstract

We studied the effects of fatty acid oxidation on insulin secretion of db/db mice and underlying molecular mechanisms of these effects. At 2-3 months of age, db/db mice were markedly obese, hyperglycemic, and hyperinsulinemic. Serum free fatty acid (FFA) levels were increased in 2-month-old (1.5 +/- 0.1 vs. 1.1 +/- 0.1 mmol/l, P < 0.05) and 3-month-old (1.9 +/- 0.1 vs. 1.2 +/- 0.1 mmol/l, P < 0.01) mice compared with the age and sex-matched db/+ mice serving as controls. Glucose-induced insulin release from db/db islets was markedly decreased compared with that from db/+ islets and was specifically ameliorated (by 54% in 2-month-old and 38% in 3-month-old mice) by exposure to a carnitine palmitoyltransferase I inhibitor, etomoxir (1 micromol/l). Etomoxir failed to affect the insulin response to alpha-ketoisocaproate. The effect of etomoxir on glucose-induced insulin release was lost after culturing db/db islets in RPMI medium containing 22 mmol/l glucose but no fatty acid. Culture of db/+ islets with 0.125 mmol/l palmitate led to a decrease in glucose-induced insulin secretion, which was partially reversible by etomoxir. Both islet glucose oxidation and the ratio of glucose oxidation to utilization were decreased in db/db islets. Etomoxir significantly enhanced glucose oxidation by 60% and also the ratio of oxidation to glucose utilization (from 27 +/- 2.5 to 37 +/-3.0%, P < 0.05). Pyruvate dehydrogenase (PDH) activity was decreased in islets of db/db mice (75 +/-4.2 vs. 91 +/- 2.9 nU/ng DNA, P < 0.01), whereas PDH kinase activity was increased (rate of PDH inactivation -0.25 +/- 0.02 vs. - 0.11 +/- 0.02/min, P < 0.0 1). These abnormalities were partly but not wholly reversed by a 2-h preexposure to etomoxir. In conclusion, elevated FFA levels in the db/db mouse diminish glucose-induced insulin secretion by a glucose-fatty acid cycle in which fatty acid oxidation inhibits glucose oxidation by decreasing PDH activity and increasing PDH kinase activities.

PubMed Disclaimer

Publication types

MeSH terms