Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb 9;271(6):3172-8.
doi: 10.1074/jbc.271.6.3172.

Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis

Affiliations
Free article

Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis

G D Eytan et al. J Biol Chem. .
Free article

Abstract

We have recently described an ATP-driven, valinomycin-dependent 86Rb+uptake into proteoliposomes reconstituted with mammalian P-glycoprotein (Eytan, G. D., Borgnia, M. J., Regev, R., and Assaraf, Y. G. (1994) J. Biol. Chem. 269, 26058-26065). P-glycoprotein mediated the ATP-dependent uptake of 86Rb+-ionophore complex into the proteoliposomes, where the radioactive cation was accumulated, thus, circumventing the obstacle posed by the hydrophobicity of P-glycoprotein substrates in transport studies. Taking advantage of this assay and of the high levels of P-glycoprotein expression in multidrug-resistant Chinese hamster ovary cells, we measured simultaneously both the ATPase and transport activities of P-glycoprotein under identical conditions and observed 0.5-0.8 ionophore molecules transported/ATP molecule hydrolyzed. The amount of 86Rb+ ions transported within 1 min via the ATP- and valinomycin-dependent P-glycoprotein was equivalent to an intravesicular cation concentration of 8 mM. Thus, this stoichiometry and transport capacity of P-glycoprotein resemble various ion-translocating ATPases, that handle millimolar substrate concentrations. This constitutes the first demonstration of comparable rates of P-glycoprotein-catalyzed substrate transport and ATP hydrolysis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources