Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan 17:777:374-9.
doi: 10.1111/j.1749-6632.1996.tb34448.x.

Brain glucose metabolism is controlled by amplification and desensitization of the neuronal insulin receptor

Affiliations

Brain glucose metabolism is controlled by amplification and desensitization of the neuronal insulin receptor

S Hoyer et al. Ann N Y Acad Sci. .

Abstract

Glucose metabolism is essential for brain function and structure. Glucose contributes to the formation of neurotransmitters and is normally the only source for energy formation. There is increasing evidence that brain glucose metabolism is under control of the neuronal insulin/insulin receptor signal transduction. The present data clearly show that intracerebroventricularly administered insulin exerts anabolic effects on cerebral glucose/energy metabolism (amplification of the neuronal insulin receptor complex) whereas cortisol (corticosterone) acts antagonistically (desensitization of the neuronal insulin receptor complex). It is also shown that short-term cortisol (corticosterone) enhanced energy turnover in temporoparietal cortex and hippocampus. In contrast, long-term cortisol (corticosterone) reduced energy turnover in both brain structures studied. This metabolic pattern is reminiscent of that found in very old age. Therefore, it is assumed that long-term cortisol accelerates the aging process in the brain and thus the risk for age-related disorders such as dementia.

PubMed Disclaimer

Publication types

LinkOut - more resources