Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Jan;17(2):137-46.
doi: 10.1016/0142-9612(96)85758-9.

Role of material surfaces in regulating bone and cartilage cell response

Affiliations
Review

Role of material surfaces in regulating bone and cartilage cell response

B D Boyan et al. Biomaterials. 1996 Jan.

Abstract

Tissue engineering in vitro and in vivo involves the interaction of cells with a material surface. The nature of the surface can directly influence cellular response, ultimately affecting the rate and quality of new tissue formation. Initial events at the surface include the orientated adsorption of molecules from the surrounding fluid, creating a conditioned interface to which the cell responds. The gross morphology, as well as the microtopography and chemistry of the surface, determine which molecules can adsorb and how cells will attach and align themselves. The focal attachments made by the cells with their substrate determine cell shape which, when transduced via the cytoskeleton to the nucleus, result in expression of specific phenotypes. Osteoblasts and chondrocytes are sensitive to subtle differences in surface roughness and surface chemistry. Studies comparing chondrocyte response to TiO2 of differing crystallinities show that cells can discriminate between surfaces at this level as well. Cellular response also depends on the local environmental and state of maturation of the responding cells. Optimizing surface structure for site-specific tissue engineering is one option; modifying surfaces with biologicals is another.

PubMed Disclaimer

Publication types

LinkOut - more resources