Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr 26;271(17):10079-86.
doi: 10.1074/jbc.271.17.10079.

The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases

Affiliations
Free article

The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases

J M Whitelock et al. J Biol Chem. .
Free article

Abstract

Perlecan is a modular heparan sulfate proteoglycan that is localized to cell surfaces and within basement membranes. Its ability to interact with basic fibroblast growth factor (bFGF) suggests a central role in angiogenesis during development, wound healing, and tumor invasion. In the present study we investigated, using domain specific anti-perlecan monoclonal antibodies, the binding site of bFGF on human endothelial perlecan and its cleavage by proteolytic and glycolytic enzymes. The heparan sulfate was removed from perlecan by heparitinase treatment, and the approximately 450-kDa protein core was digested with various proteases. Plasmin digestion resulted in a large fragment of approximately 300 kDa, whereas stromelysin and rat collagenase cleaved the protein core into smaller fragments. All three proteases removed immunoreactivity toward the anti-domain I antibody. We showed also that perlecan bound bFGF specifically by the heparan sulfate chains located on the amino-terminal domain I. Once bound, the growth factor was released very efficiently by stromelysin, rat collagenase, plasmin, heparitinase I, platelet extract, and heparin. Interestingly, heparinase I, an enzyme with a substrate specificity for regions of heparan sulfate similar to those that bind bFGF, released only small amounts of bFGF. Our findings provide direct evidence that bFGF binds to heparan sulfate sequences attached to domain I and support the hypothesis that perlecan represents a major storage site for this growth factor in the blood vessel wall. Moreover, the concerted action of proteases that degrade the protein core and heparanases that remove the heparan sulfate may modulate the bioavailability of the growth factor.

PubMed Disclaimer

Publication types

LinkOut - more resources