A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties
- PMID: 8626760
- DOI: 10.1074/jbc.271.8.4183
A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties
Abstract
YORK is a newly cloned K+ channel from yeast. Unlike all other cloned K+ channels, it has two pore domains instead of one. It displays eight transmembrane segments arranged like a covalent assembly of a Shaker-type voltage-dependent K+ channel (without S4 transmembrane segments) with an inward rectifier K+ channel. When expressed in Xenopus oocytes, YORK does not pass inward currents; it conducts only K+-selective outward currents. However, the mechanism responsible for this strict outward rectification is unusual. Like inward rectifiers, its activation potential threshold closely follows the K+ equilibrium potential. Unlike inward rectifiers, the rectification is not due to a voltage-dependent Mg2+ block. The blocking element is probably intrinsic to the YORK protein itself. YORK activity is decreased at acidic internal pH, with a pKa of 6.5. Pharmacological and regulation properties were analyzed. Ba2+ ions and quinine block YORK currents through high and low affinity sites, while tetraethylammonium displays only one affinity for blocking. Activation of protein kinase C indirectly produces an increase of the current, while protein kinase A activation has no effect.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases