Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb 23;271(8):4183-7.
doi: 10.1074/jbc.271.8.4183.

A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties

Affiliations
Free article

A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties

F Lesage et al. J Biol Chem. .
Free article

Abstract

YORK is a newly cloned K+ channel from yeast. Unlike all other cloned K+ channels, it has two pore domains instead of one. It displays eight transmembrane segments arranged like a covalent assembly of a Shaker-type voltage-dependent K+ channel (without S4 transmembrane segments) with an inward rectifier K+ channel. When expressed in Xenopus oocytes, YORK does not pass inward currents; it conducts only K+-selective outward currents. However, the mechanism responsible for this strict outward rectification is unusual. Like inward rectifiers, its activation potential threshold closely follows the K+ equilibrium potential. Unlike inward rectifiers, the rectification is not due to a voltage-dependent Mg2+ block. The blocking element is probably intrinsic to the YORK protein itself. YORK activity is decreased at acidic internal pH, with a pKa of 6.5. Pharmacological and regulation properties were analyzed. Ba2+ ions and quinine block YORK currents through high and low affinity sites, while tetraethylammonium displays only one affinity for blocking. Activation of protein kinase C indirectly produces an increase of the current, while protein kinase A activation has no effect.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources