Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr;66(4):1617-24.
doi: 10.1046/j.1471-4159.1996.66041617.x.

Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria

Affiliations

Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria

G P Davey et al. J Neurochem. 1996 Apr.

Abstract

The amount of control exerted by respiratory chain complexes in isolated nonsynaptic mitochondria prepared from rat brain on the rate of oxygen consumption was assessed using inhibitor titrations. Rotenone, myxothiazol, and KCN were used to titrate the activities of NADH:ubiquinone oxidoreductase (EC 1.6.5.3; complex I), ubiquinol:ferrocytochrome c oxidoreductase (EC 1.10.2.2; complex III), and cytochrome c oxidase (EC 1.9.3.1; complex IV ), respectively. Complexes I, III, and IV shared some of the control of the rate of oxygen consumption in nonsynaptic mitochondria, having flux control coefficients of 0.14, 0.15, and 0.24, respectively. Threshold effects in the control of oxidative phosphorylation were demonstrated for complexes I, III, and IV. It was found that complex I activity could be decreased by approximately 72% before major changes in mitochondrial respiration and ATP synthesis took place. Similarly, complex III and IV activities could be decreased by approximately 70 and 60%, respectively, before major changes in mitochondrial respiration and ATP synthesis occurred. These results indicate that previously observed decreases in respiratory chain complex activities in some neurological disorders need to be reassessed as these decreases might not affect the overall capability of nonsynaptic mitochondria to maintain energy homeostasis unless a certain threshold of decreased complex activity has been reached. Possible implications for synaptic mitochondria and neurodegenerative disorders are also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources