Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Mar 29;271(13):7712-8.
doi: 10.1074/jbc.271.13.7712.

A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization

Affiliations
Free article
Comparative Study

A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization

T M Jenkins et al. J Biol Chem. .
Free article

Abstract

Structural studies of human immunodeficiency virus type 1 (HIV-1) integrase have been impeded by the low solubility of the protein. By systematic replacement of hydrophobic residues, we previously identified a single amino acid change (F185K) that dramatically improved the solubility of the catalytic domain of HIV-1 integrase and enabled the structure to be determined by x-ray crystallography. We have introduced the same mutation into full-length HIV-1 integrase. The resulting recombinant protein is soluble and fully active in vitro, whereas, HIV-1 carrying the mutation is replication-defective due to improper virus assembly. Analysis of the recombinant protein by gel filtration and sedimentation equilibrium demonstrate a dimer-tetramer self-association. We find that the regions involved in multimerization map to both the catalytic core and carboxyl-terminal domains. The dramatically improved solubility of this protein make it a good candidate for structural studies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources